Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes.

نویسندگان

  • Marina Sedova
  • Elena N Dedkova
  • Lothar A Blatter
چکیده

Decoding of fast cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca(2+)] ([Ca(2+)](m)) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca(2+)] ([Ca(2+)](em)) to >0.5 microM resulted in a [Ca(2+)](em)-dependent increase in the rate of mitochondrial Ca(2+) accumulation ([Ca(2+)](em) resulting in half-maximal rate of Ca(2+) accumulation = 4.4 microM) via Ca(2+) uniporter. Ca(2+) uptake was sensitive to the Ca(2+) uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca(2+)](m) increase and recovery were dependent on the extramitochondrial [Na(+)] ([Na(+)](em)) due to Ca(2+) extrusion via mitochondrial Na(+)/Ca(2+) exchanger. The maximal rate of Ca(2+) extrusion was observed with [Na(+)](em) in the range of 20-40 mM. Rapid switching (0.25-1 Hz) of [Ca(2+)](em) between 0 and 100 microM simulated rapid beat-to-beat changes in [Ca(2+)](i) (with [Ca(2+)](i) transient duration of 100-500 ms). No [Ca(2+)](m) oscillations were observed, either under conditions of maximal rate of Ca(2+) uptake (100 microM [Ca(2+)](em), 0 [Na(+)](em)) or with maximal rate of Ca(2+) removal (0 [Ca(2+)](em), 40 mM [Na(+)](em)). The slow frequency-dependent increase of [Ca(2+)](m) argues against a rapid transmission of Ca(2+) signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca(2+)](m) changes elicited by continuous or pulsatile exposure to elevated [Ca(2+)](em) showed no difference in mitochondrial Ca(2+) uptake. Thus in cardiac myocytes fast [Ca(2+)](i) transients are integrated by mitochondrial Ca(2+) transport systems, resulting in a frequency-dependent net mitochondrial Ca(2+) accumulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of rapid cytosolic Ca signals by mitochondria in cat ventricular myocytes

Sedova, Marina, Elena N. Dedkova, and Lothar A. Blatter. Integration of rapid cytosolic Ca signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol 291: C840–C850, 2006. First published May 24, 2006; doi:10.1152/ajpcell.00619.2005.—Decoding of fast cytosolic Ca concentration ([Ca ]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochon...

متن کامل

Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors.

Mitochondrial Ca2+ uptake responds dynamically and sensitively to changes in cytosolic Ca2+ levels and plays a crucial role in sequestering the large Ca2+ load induced by N-methyl-D-aspartate (NMDA) receptor activation. However, the precise interrelationships between NMDA receptor activation, cytosolic Ca2+ increase, and mitochondrial Ca2+ uptake remain obscure. To reliably, independently, and ...

متن کامل

Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes.

Ruthenium red is a well known inhibitor of Ca2+ uptake into mitochondria in vitro. However, its utility as an inhibitor of Ca2+ uptake into mitochondria in vivo or in situ in intact cells is limited because of its inhibitory effects on sarcoplasmic reticulum Ca2+ release channel and other cellular processes. We have synthesized a ruthenium derivative and found it to be an oxygen-bridged dinucle...

متن کامل

Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release.

Depressed contractility of failing myocytes involves a decreased rate of rise of the Ca2+ transient. Synchronization of Ca2+ release from the junctional sarcoplasmic reticulum (SR) is responsible for the rapid rise of the normal Ca2+ transient. This study examined the idea that spatially and temporally dyssynchronous SR Ca2+ release slows the rise of the cytosolic Ca2+ transient in failing feli...

متن کامل

Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes.

We hypothesized that mitochondria function as the O2 sensors underlying hypoxic pulmonary vasoconstriction by releasing reactive oxygen species (ROS) from complex III of the electron transport chain (ETC). We have previously found that antioxidants or inhibition of the proximal region of the ETC attenuates hypoxic pulmonary vasoconstriction in rat lungs and blocks hypoxia-induced contraction of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 291 5  شماره 

صفحات  -

تاریخ انتشار 2006